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Abstract. We use a generalised Von Karman-Heisenberg-von Weizsacker-type model for 
the inertial transfer to give a generalised spectral law for the enstrophy cascade in a 
two-dimensional turbulence that exhibits a steeper energy spectrum for large wavenumbers 
and  reduces to the well known k-' spectrum at  the other end  of the spectrum. For  very 
high wavenumbers,  this spectrum is, in fact, an  arbitrarily steep power law. Nonetheless, 
i t  is possible to  given an  even more rapidly decaying spectrum for this range, using a 
continuous spectral  cascading model.  We will then discuss the intermittency aspects of 
the departures from the Batchelor-Kraichnan scaling law and  show that  while the intermit- 
tency corrections within the framework of the @ model of Frisch et a /  are in qualitative 
agreement with the predictions made  by the generalised spectral law given in this paper,  
intermittency by itself is unable to account fully for the steeper spectra at large wavenumbers 
observed in the numerical experiments.  We will discuss further fractal aspects of the 
enstrophy cascade, a n d  show that for the enstrophy cascade, the fractal dimension rules 
not only the manner  in which the cascading proceeds but also the point where i t  s tops.  

1. Introduction 

Kraichnan (1967) and Batchelor (1969) pointed out the possibility of two inertial 
ranges in a two-dimensional turbulence: a k-'I' spectrum range in which the energy 
propagates to larger scales, and k-' spectrum range in which the enstrophy (which is 
the square of vorticity) propagates to smaller scales. Kraichnan (1967) proposed that 
both ranges would exist simultaneously in a continuously driven turbulence. Leith 
(1968) derived a diffusion approximation to inertial energy transfer in such a way that 
energy and enstrophy are conserved, and predicted the k-5'3 and k-' inertial ranges. 
Lilly (1969), Herring et a1 (1974), Pouquet et a1 (1975), and Frisch and Sulem (1984) 
carried out numerical simulation experiments and confirmed the conjecture of Kraich- 
nan (1967) and Batchelor (1969) that there occurs a transfer of excitation to lower 
and higher wavenumbers in a manner qualitatively consistent with the simultaneous 
existence of both the energy and enstrophy inertial ranges. Atmospheric measurements 
have also revealed the existence of an energy cascade (Fjortoft 1953) and an enstrophy 
cascade (Ogura 1958, Wiin-Nielsen 1967, Julian et a1 1970, Morel and Necco 1973, 
Morel and Larcheveque 1974, Desbois 1975). Kraichnan (1971) proposed further that 
the k-3 spectrum for the enstrophy cascade should be modified by a logarithmic 
correction term to give k - ' [ ln (k / k , ) ] - ' ' ' .  However, the latter result does not extend 
to infinity, because it does not give the rapid decay of the spectrum prevalent at high 
wavenumbers. Kida (1981) applied the modified cumulant expansion and numerically 
calculated the equations for the energy spectrum, and confirmed a more rapid decay 
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of the spectrum in the enstrophy cascade at very large wavenumbers. Numerical 
simulations of decaying flows (Basdevant and  Sadourny 1983, McWilliams 1984a) and  
forced flows (Kida 1985, Brachet er a1 1986, Basdevant et a1 1981) also gave energy 
spectra steeper than k - 3 .  

The whole theory of two-dimensional turbulence had, until recently, remained 
almost an  academic exercise, notwithstanding its possible connections with atmospheric 
and  oceanic large-scale flows. Just recently, truly two-dimensional flows were produced 
to a close approximation finally in laboratory experiments. Experimental evidence of 
the existence of inverse energy cascade was first obtained by Couder (1984) on thin 
liquid soap films, then by Sommeria (1986) in a shallow mercury layer immersed in a 
strong normal magnetic field. However, the enstrophy cascade has not been obtained 
in the laboratory, and at present only numerical simulations have been able to give 
some information on it. 

I n  this paper, we will use a generalised Von Karman-Heisenberg-von Weizsacker- 
type inertial transfer model to give a generalised spectral law for the enstrophy cascade 
that exhibits a steeper energy spectrum for large wavenumbers and  reduces to the well 
known k-' spectrum at the other end of the spectrum. For very high wavenumbers 
this spectrum is, in fact, an  arbitrarily steep power law. Nonetheless, it is possible to 
give an  even more rapidly decaying exponential-type spectrum, using a stationary 
continuous spectral cascading model. 

Basdevant et a1 (1981) argued that the steeper energy spectra at large wavenumbers 
is due  to intermittency in the flow: enstrophy dissipation is a highly fluctuating quantity 
whose statistical properties significantly affect the energy spectrum at small scales. 
Earlier, Mandelbrot (1976) argued that intermittency is related to the fractal aspects 
of turbulence. In  particular, Mandelbrot (1976) proposed that the dissipation is 
concentrated on a set with non-integer Hausdorff dimension. Mandelbrot's ideas were 
formulated in a simpler way through a phenomenological model called the P-model 
(which was based or1 the ideas advanced by Kraichnan 1972) by Frisch et a1 (1978). 
The key assumption in this model is that the flux of energy is transferred to only a 
fixed fraction P of the eddies downstream in the cascade. A noteworthy feature of 
the P-model is that we d o  not have to assume the Batchelor-Kraichnan scaling laws 
initially and  then derive their modified versions by somehow mysteriously incorporating 
the dissipation fluctuations. 

The application of the P-model to the inverse energy cascade was done by Frisch 
et a1 (19781, who found that the intermittency corrections decrease the 5/3 exponent. 
In  this paper, we will apply the P-model to the enstrophy cascade and  confirm that 
intermittency will steepen the energy spectrum, in qualitative agreement with the 
generalised spectral law for the enstrophy cascade given in this paper. However, we 
will show that intermittency by itself is unable to account fully for steeper spectra 
observed in the numerical experiments. We will finally consider further fractal aspects 
of the enstrophy cascade and  show that the fractal dimension now rules not only the 
manner in which the cascade proceeds but also the point where it stops. 

2. Fourier analysis of the turbulent field 

Fourier analysis of the velocity field, when it is a stationary random function of position, 
affords a view of the turbulent motion as comprised of the superposition of motions 
of a large number of components of different scales. These components contribute 
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additively to the total energy and  total enstrophy and  interact with each other according 
to the nonlinear inertial terms in the equations of flow. 

Let us express the flow properties at any point x at time t ,  as a superposition of 
plane waves of the form, 

k 

1 
- p ( x ,  t )  =C ~ ( k ,  t )  e ik’x  
P k 

where U is the fluid velocity, p the pressure, and  p is the fluid density. Since V and 
P are actually measurable, they must be real so that 

V * ( k )  = V (  - k )  P*(  k )  = P( - k ) .  ( 2 )  

We have dropped the argument t for convenience. We then obtain from the equations 
of continuity and  motion 

v * u = o  (3 )  

a U  1 

a t  P 
-+(U. V ) u  = - - v p +  vv’u 

and the equation 

( i + y l k 1 2 ) Y ( k ) = - i k ,  ( ”‘-7 kJk)  V , ( k ’ ) V , ( k - k ‘ ) .  

(4) 

Here v is the kinematic viscosity. 
In two-dimensional turbulence, there are two conserved quantities-the energy and  

the enstrophy which is the mean square vorticity. (Due to a finite viscosity, however, 
the enstrophy is dissipated at  a non-negligible rate; therefore the maintenance of a 
stationary state requires an  external source since the vortex stretching, which acts like 
a source of vorticity, is inoperative here unlike the three-dimensional turbulence. 
However, energy dissipation will tend to zero as v + 0 so that two-dimensional tur- 
bulence is almost non-dissipative as Y + 0.) Therefore, there are two types of inertial 
ranges-one for energy and one for enstrophy. 

3. Generalised Von Karman-Heisenberg-von Weizsacker-type inertial transfer model 
for the enstrophy cascade 

We have from ( 5 )  

where D ( k )  is the enstrophy density in the Fourier space, 

D ( k ) = : I R ( k ) l ’ = $ l k x  V ( k ) I * =  k 2 ( ( k )  

and 
(7) 

U,,,, = - ik ,R , (k )Vm(k’ ) s2 , (k -k‘ ) .  (8) 
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When the volume of the flow region becomes large, we may replace the Fourier 
sum in (6) by a Fourier integral 

,. 
U(&,  k ' )  = J G ( k ,  k ' )  dk'  

k '  
(9) 

where G( k, k ' )  is the net enstrophy gain by modes of wavenumber k from all modes 
in the range k' to k '+dk ' .  In order to write an expression for this quantity, it is 
necessary to make some assumption about the nonlinear inertial transfer of enstrophy 
across the spectrum. We use a generalised Von Karman-Heisenberg-von Weizsacker- 
type model, according to which the process of transfer of enstrophy from large to 
small wavelengths is described by a gradient-diffusion type cascade process (i.e. a 
small-scale rapidly adjusting motion superimposed on a large-scale slowly adjusting 
motion) characterised by an eddy viscosity produced by large wavenumber modes 
acting to remove enstrophy from small wavenumber modes. This idea is similar to the 
one originally proposed by Heisenberg (1948) and von Weizsacker (1948) for the 
transfer of turbulent kinetic energy in the three dimensional case and generalised by 
Von Karman (1948). The latter model has been shown by Uberoi and Narain (1974) 
to compare more favourably with experiments than the original Heisenberg-von 
Weizsacker model. 

If each mode in the range of wavenumbers from k ' =  k to k ' =  00 is to make a 
separate and similar contribution to the eddy viscosity ; ( k )  which depends on the 
energy density E (  k ' )  and the wavenumber k' only, then by dimensional considerations, 
we may write 

k ' <  k 
k ' >  k (10) 

[D(k ) l "k"  2A[ t( k r ) ] l 3 / 2  )-Ilk'( 1 / 2 ) -  fn { -2A[ D( k ) ] ( 3 / 2 ! - f l k ( l / 2 ) - m  [ .$( k')]"" G ( k ,  k ' ) =  

where A is a universal constant and m and n are arbitrary constants. 

is given by 
The rate of loss of enstrophy by modes with wavenumbers less than some value k 

where 

; ( k ) = A  [ t ( k ' ) ] " k ' "  dk'. I,' (12) 

Let us now replace the left hand side in ( 1  1 )  by the total rate of decay of enstrophy, 
7. This is valid for values of k such that 

job D(k" )  dk">> E D ( k " )  dk". 
k 

One then obtains from ( 1 1 ) :  

2 vD( k )  k' + [ 2A( &( k ) )  "k "'1 
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A solution of (13) for arbitrary values of m and n has not been obtained. However, 
it is possible to obtain the asymptotic forms of solution of (13) in the limit of small 
and  large values of the wavenumber k. 

Thus, for small wavenumbers, which correspond to v<< ; ( k ) ,  we obtain 

(14) [ ( k ) -  k<4f7/3)-(l l  3 )  

Equation (14) agrees with the well known inertial-range result 

[( k )  - k-' ( 1 5 )  

if we choose 

n = $  (16) 

which also corresponds to the choice for n one has to make to reduce (10) to a 
Heisenberg-von Weizsacker-type model. Thus, the present model has only one free 
parameter m and reduces completely to the Heisenberg-von Weizsacker-type model 
by taking m = -312. 

On the other hand, for large wavenumbers, which correpond to v >> i7( k ) ,  equation 
(13) gives the new dissipative branch 

(17) [ ( k )  - k- (m-4 i ' (n - l )  

or  on using (16), 

,$( k) - k 2 ( m - 4 ' .  (18) 

For a Heisenberg-von Weizsacker-type model, for which m = -312, an  explicit 
solution of equation (13) can be obtained: 

Equation (19) shows that there is a new length scale 5, 

that characterises the enstrophy cascade, just as the Kolmogorov scale characterises 
the energy cascade. Let us call 5 the Kraichnan scale. Equation (19) gives for 
k<< (A2 /4 )" '~ - ' ,  

in agreement with ( 1 5 ) .  While (19) gives for k >> (A2/4)1''55-', 

in agreement with (18) when one puts m = -312. 
Equation (18) exhibits a more rapid decay of the spectrum for large wavenumbers. 

The spectrum in this range, according to (18), is in fact an  arbitrarily steep power law. 
Nonetheless, it is possible to give an even more rapidly decaying exponential-type 
spectrum using a stationary continuous spectral cascading model. 
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4. Stationary continuous spectral cascading model 

A stationary continuous spectral cascading model gives a satisfactory description of 
the transfer of turbulent enstrophy at large wavenumbers because the later stages in 
the cascade tend toward a stationary process in the wavenumber space. (This idea is 
similar to the one proposed by Pao (1965) for transfer of turbulent kinetic energy at 
large wavenumbers in the three-dimensional case.) 

In stationary turbulence, (6) can be written as 

N (  k)  = G( k, k’) dk’ = vk’D( k )  (23) 

N ( k )  represents the contribution to the inertial transfer of enstrophy to the mode of 
wavenumber k from all wavenumbers. Then, the enstrophy flux from wavenumbers 
less than k to wavenumbers greater than k is 

i 

(24) 

or 

-- - -N(k ) .  
dR 
dk  

If we now visualise the transfer of turbulent enstrophy as a cascading process in which 
the spectral enstrophy is continuously transferred to ever larger wavenumbers, we can 
write 

dk 
R(k )  = D ( K )  - 

dt  

where dk ld t  is the spectral cascading rate. Let us now assume that this process depends 
on T (the rate at which the turbulent enstrophy is fed to small eddies), on the viscosity 
v (in accordance with (22)), and on the wavenumber k (or equivalently, the size of 
the small eddies). On dimensional grounds, we then have 

where D is a positive constant. This reflects the fact that dk ld t  > 0 for the enstrophy 
cascade. 

Using (25)-(27), (24) becomes 

d 
dk 
- [ D T ” ~ ~ ~ & (  k)] = - vk45( k )  (28) 

from which we have 

V 
&( k)  = Fk-’ exp ( - - 2D71/3 k 2 ) *  

For k<< (8D3)”65-’ ,  (29) gives 

&( k) = Fk-’ (30) 
in agreement with (15). Equation (29) gives an exponential decay at very large 
wavenumbers. 
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5. &model for the intermittency corrections to the enstrophy cascade 

Though the enstrophy cascades toward small scales through nonlinear interactions, 
the measure of the spatial domain in which such transfers are active decreases as the 
scale size decreases (Basdevant and Sadourny 1983, Benzi er a1 1984). Kraichnan 
(1971) argued that intermittency will not affect the small-scale energy spectrum because 
the enstrophy-cascade interaction is not local in wavenumber space. This also means 
that it takes an infinitely long time to initiate a fully developed spectrum in a nearly 
inviscid flow driven by random forcing at a fixed wavenumber. However, Basdevant 
et a1 (1981) and  Benzi er a1 (1984) have shown that in the absence of any organised 
large-scale motion, intermittency is able to steepen the energy spectrum by restoring 
the spectral localness of nonlinear interactions. This intermittency is the result of the 
formation of spatially organised vortices, found in the numerical simulations of McWil- 
liams (1984b) in decaying situations after long periods of time, and  also in some 
stationary forced situations with a forcing spectrum at high wavenumbers (Basdevant 
et a1 1981, Herring and  McWilliams 1985). 

Consider now a discrete sequence of scales 

I ,  = lop-" n = 0 , 1 , 2 ,  . . .  (31) 

and  a discrete sequence of wavenumbers k, = 1 ; ' .  Here p is the constant ratio of the 
cascade in sizes. The kinetic energy per unit mass in the nth scale is defined by 

Let us assume that we have a statistically stationary turbulence where enstrophy 
is introduced into the fluid at  scales -1, and is then transferred successively to scales 
- I , ,  1 2 , .  . . , until some scale I ,  is reached where dissipation is able to compete with 
nonlinear transfer. We now assume again that at the nth step, only a fraction p"  of 
the total space has an appreciable excitation. 

The enstrophy per unit mass in the nth scale is then given by 

where 

D is the fractal dimension of the region in which dissipation is concentrated. Equation 
(34) expresses the fact that intermittency now increases with decrease of scale size. 

The rate of transfer of enstrophy per unit mass from the nth scale to the ( n  + 1)th 
scale is given by 

where t ,  is a characteristic time of the nth scale, t ,  = l,,/ V,. In the enstrophy inertial 
range, we assume a stationary process in which enstrophy is introduced at scales -1, 
and removed at scales -1, ; conservation of enstrophy requires that 

r, = 7 Id 1, c I,. (36) 
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It is convenient to think of 7 also as the mean enstrophy dissipation rate which is what 
it would be when the eddies are of the order of the Kraichnan length scale 5. 

Equations (34)-(36) then give 

Equation (39) leads to the energy spectrum 
~ ( k )  - + 2 / 3 k - 3 ( k 1 0 ) - i 2 - D J / 3  

Equation (40) shows that the intermittency corrections to the enstrophy cascade increase 
the 3 exponent. This is also in agreement with the predictions for large wavenumbers 
of the generalised spectral law (13) for the enstrophy cascade. Further, observe that 
according to (40), the enstrophy cascade cannot have a spectrum steeper than k-"". 
The latter result has also been deduced directly from the Navier-Stokes equations 
(Sulem and  Frisch 1975, Pouquet 1978). (The k-'I" spectrum was also shown by 
Gilbert (1988), to correspond to the passive advection of spiral filaments which form 
around the coherent vortices observed in numerical simulation of decaying two- 
dimensional turbulence (McWilliams 1984a).) Thus, intermittency by itself is unable 
to account fully for steeper spectra observed in the numerical experiments. 

Let us now discuss the lower bound for the fractal dimension D in the enstrophy 
cascade. Equating r, to the viscous dissipation time, we have 

where 

V 

Now, from (34), 

where N is the average number of offspring, which can be less than unity, so that D 
can assume arbitrary negative values. However, according to (41), there is a dynamical 
reason to require D >  -4; otherwise, the enstrophy cascade will never be terminated 
by viscosity. 

Let us next discuss further the manner in which the fractal dimension influences 
the development and termination of the enstrophy cascade. The first curdling stage 
leads to curds of size lop-'  in which enstrophy dissipation is equal to either 0 or ~ p ' - ~ ,  
and the Kraichnan scale is i~- '*-~' '~ . In  the nth stage, the average dissipation is 
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TP ( - cl ’ , the curd size is I ,+-” and the Kraichnan scale is < p - ” ’ 2 - D ’  . Thus, both the 
Kraichnan scale and  the curd size decrease with increase in n. However, curdling can 
continue only until the curd size is bigger than the Kraichnan scale and will stop 
thereafter. This occurs when 

S P - n ( 2 - D ’  6 -  lop - ” 

Hence, for the enstrophy cascade, the fractal dimension rules not only the manner 
in which the curdling proceeds but also the point where it stops. 

6. Discussion 

We have given a generalised Von Karman-Heisenberg-von Weizsacker-type inertial 
transfer model for the enstrophy cascade in a two-dimensional turbulence. This model 
gives spectra that are arbitrarily steep power laws for very high wavenumbers so that 
this model may be able to provide a satisfactory unified framework for describing both 
the inertial range and  the strongly viscous range of the enstrophy cascade, like the 
case with three-dimensional turbulence. This aspect is not yet conclusive, since the 
enstrophy cascade has not been obtained in the laboratory. The large wavenumber 
limit of the enstrophy cascade can also be modelled in a satisfactory way as a stationary 
continuous spectral cascading process. 

The departures from the Batchelor-Kraichnan scaling law can be described also 
in terms of intermittency corrections through the so-called P-model which are found 
to be in qualitative agreement with the predictions made by the generalised spectral 
law in this paper. However, intermittency by itself has been shown to be unable to 
account fully for the steeper spectra observed at large wavenumbers in numerical 
experiments. One may generalise the P-model to admit the possibility that the region 
containing the dissipation is instead a non-homogeneous fractal. Thus, in the spirit 
of Mandelbrot’s (1976) weighted-curdling model, the contraction factors P may be 
considered as independent random variables (Benzi et a f  1984) which can take different 
values in each scale i at the nth step of the cascade. It is to be noted that though a 
great deal of work has been done to account for the intermittency corrections, no 
definite theoretical framework toward this goal exists to date. A deductive theory, 
based directly on the Navier-Stokes equation, is what is really needed. But this has 
proved elusive as yet. 
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